Pipeline Monitoring & Alerting | CONFIDENTIAL

PIPELINE
MONITORING & ALERTING

Monitoring Hub • Metrics • Alerting • Dashboards • Troubleshooting

Version 1.0 | January 2026

Table of Contents

1. Monitoring Overview
Effective pipeline monitoring ensures data reliability, enables proactive issue detection, and supports operational excellence. This guide covers monitoring capabilities, alerting patterns, and best practices for Fabric Data Factory pipelines.
1.1 Monitoring Objectives
1. Detect failures early and alert appropriate teams
1. Track execution trends and performance
1. Enable rapid troubleshooting of issues
1. Ensure SLA compliance for data delivery
1. Provide visibility to stakeholders
1.2 Monitoring Components
	Component
	Purpose
	Access

	Monitoring Hub
	Real-time pipeline run status
	Fabric workspace

	Activity Output
	Detailed execution metrics
	Pipeline run details

	Audit Logs
	Security and compliance tracking
	Microsoft 365 audit

	Custom Logging
	Business-specific metrics
	Lakehouse/database

	Azure Monitor
	Enterprise monitoring integration
	Log Analytics

2. Monitoring Hub
Monitoring Hub is the central location for viewing pipeline execution status and history in Fabric.
2.1 Accessing Monitoring Hub
1. Navigate to workspace
1. Click 'Monitoring Hub' in left navigation
1. Filter by item type (Pipeline, Dataflow, Notebook)
1. View run history, status, and duration
2.2 Run Status Values
	Status
	Description
	Action

	Succeeded
	Pipeline completed successfully
	None required

	Failed
	Pipeline encountered error and stopped
	Investigate and retry

	In Progress
	Pipeline currently executing
	Monitor progress

	Queued
	Pipeline waiting for resources
	Check capacity

	Cancelled
	Pipeline manually cancelled
	Review if intentional

2.3 Run Details
Click a run to view detailed information:
1. Activity execution timeline (Gantt view)
1. Input/Output for each activity
1. Duration per activity
1. Error messages for failed activities
1. Retry attempts and outcomes

3. Key Metrics
3.1 Pipeline Metrics
	Metric
	Description
	Target

	Success Rate
	% of runs completing successfully
	> 99%

	Duration
	Total execution time
	Within SLA

	Runs per Day
	Execution frequency
	As scheduled

	Retry Rate
	% of activities requiring retry
	< 5%

	Queue Time
	Time waiting for resources
	< 5 min

3.2 Activity Metrics
1. Rows Read/Written: Data volume processed
1. Duration: Time for activity completion
1. DIU Used: Compute resources consumed
1. Throughput: MB/s transfer rate
1. Error Count: Failed records/operations
3.3 Copy Activity Output
// Access in subsequent activities
@activity('CopyData').output.dataRead
@activity('CopyData').output.dataWritten
@activity('CopyData').output.rowsRead
@activity('CopyData').output.rowsCopied
@activity('CopyData').output.copyDuration
@activity('CopyData').output.throughput
3.4 Notebook Output
// In notebook, set exit value
mssparkutils.notebook.exit(json.dumps({
 'row_count': df.count(),
 'status': 'success'
})

// Access in pipeline
@activity('Notebook').output.result.exitValue

4. Alerting
Configure alerts to notify teams of pipeline issues proactively.
4.1 Alert Channels
	Channel
	Use Case
	Method

	Email
	Formal notifications
	Logic App / Web Activity

	Teams
	Team collaboration
	Webhook

	Slack
	DevOps teams
	Webhook

	PagerDuty
	Critical alerts
	API

	ServiceNow
	Incident management
	API

4.2 Teams Alert Pattern
// Web Activity for Teams notification
URL: https://outlook.office.com/webhook/{webhook-id}
Method: POST
Headers: { "Content-Type": "application/json" }
Body: {
 "@type": "MessageCard",
 "themeColor": "FF0000",
 "title": "Pipeline Failed: @{pipeline().Pipeline}",
 "text": "Run ID: @{pipeline().RunId}\nError: @{activity('Main').error.message}",
 "potentialAction": [{
 "@type": "OpenUri",
 "name": "View Run",
 "targets": [{ "uri": "https://app.fabric.microsoft.com/..." }]
 }]
}
4.3 Alert Severity
	Severity
	Criteria
	Response

	Critical
	Production pipeline failure, SLA breach
	Immediate (PagerDuty)

	High
	Multiple retries, performance degradation
	Within 1 hour

	Medium
	Warning thresholds, dev/test failures
	Same day

	Low
	Informational, trends
	Next review

5. Custom Logging
Implement custom logging for detailed operational insights.
5.1 Audit Table Schema
CREATE TABLE audit.pipeline_runs (
 run_id STRING,
 pipeline_name STRING,
 workspace_name STRING,
 status STRING,
 start_time TIMESTAMP,
 end_time TIMESTAMP,
 duration_seconds INT,
 rows_processed BIGINT,
 error_message STRING,
 parameters STRING,
 triggered_by STRING
)
5.2 Logging Pattern
// At pipeline start
Set Variable: start_time = @utcnow()

// At pipeline end (success or failure)
Stored Procedure or Notebook:
 INSERT INTO audit.pipeline_runs VALUES (
 '@{pipeline().RunId}',
 '@{pipeline().Pipeline}',
 '@{pipeline().DataFactory}',
 '@{if(equals(variables('error'), null), 'Success', 'Failed')}',
 '@{variables('start_time')}',
 '@{utcnow()}',
 ...
)
5.3 Row Count Logging
// Log row counts at each stage
bronze_count = @activity('Copy_Bronze').output.rowsCopied
silver_count = @activity('Notebook_Silver').output.result.row_count
gold_count = @activity('Notebook_Gold').output.result.row_count

6. Dashboards
Create dashboards for operational visibility and SLA tracking.
6.1 Dashboard Components
1. Pipeline health overview (success/fail rates)
1. Execution trends over time
1. SLA compliance metrics
1. Top failures by pipeline
1. Duration trends and anomalies
1. Resource utilization
6.2 Power BI Dashboard
Connect Power BI to audit table for visualizations:
1. Connect to Lakehouse or Warehouse
1. Build measures for success rate, avg duration
1. Create trend charts by day/week
1. Add failure analysis by error type
1. Configure scheduled refresh
6.3 Key Visualizations
	Visualization
	Purpose

	KPI Cards
	Success rate, total runs, avg duration

	Trend Line
	Success rate over time

	Bar Chart
	Failures by pipeline, by error type

	Table
	Recent failures with details

	Scatter Plot
	Duration anomaly detection

7. Troubleshooting
7.1 Common Issues
	Issue
	Symptoms
	Resolution

	Timeout
	Activity exceeds time limit
	Increase timeout, optimize query

	Throttling
	429 errors, slow execution
	Reduce parallelism, add delays

	Auth Failure
	401/403 errors
	Check credentials, permissions

	Data Error
	Schema mismatch, nulls
	Validate source data

	Resource
	Out of memory, queue time
	Increase capacity, optimize

7.2 Debugging Steps
1. Check Monitoring Hub for run status and errors
1. Review activity input/output for each step
1. Check error message for root cause
1. Verify source data availability and format
1. Test with smaller data subset
1. Review recent changes to pipeline or source
7.3 Error Capture
// Capture error details
@activity('FailedActivity').error.message
@activity('FailedActivity').error.errorCode
@activity('FailedActivity').error.failureType

Appendix: Document Information
	Document Title
	Pipeline Monitoring & Alerting

	Version
	1.0

	Last Updated
	January 2026

Page of
